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Abstract

Existing Multiple Kernel Clustering (MKC) algorithms com-
monly utilize the Nyström method to handle large-scale
datasets. However, most of them employ uniform sampling
for kernel matrix approximation, hence failing to accurately
capture the underlying data structure, leading to large ap-
proximation errors. Additionally, they often use the same
landmark points for all kernel matrix approximations, reduc-
ing kernel diversity. Moreover, in scenarios where approx-
imate kernel matrices emerge over time, these methods re-
quire storing historical kernel information and recalculating,
resulting in inefficient resource utilization. To address these
issues, we propose a novel MKC algorithm, termed Incre-
mental Nyström-based Multiple Kernel Clustering (INMKC).
Specifically, leverage score sampling is utilized to reduce ker-
nel approximation errors and enhance kernel diversity. Fur-
thermore, we employ a consensus clustering structure that
aligns with the newly emerged base kernel matrix for up-
dates, avoiding recalculating previous kernel matrices, thus
saving substantial computational resources. Additionally, we
tackle the challenge of aligning incremental approximate ker-
nels with different landmark points. Extensive experiments
on the proposed INMKC demonstrate its effectiveness and
efficiency compared to state-of-the-art methods.

Introduction
Kernel learning (Hofmann, Schölkopf, and Smola 2008) is
essential in machine learning, allowing classical algorithms
to solve nonlinear problems by mapping data into high-
dimensional Hilbert space. Specifically, kernel k-means can
effectively partition linearly inseparable datasets. However,
the choice of kernel functions or kernel matrices derived
from various data views can significantly impact cluster-
ing performance (Chao, Sun, and Bi 2021). To address this,
Multiple Kernel Clustering (MKC) (Zhao, Kwok, and Zhang
2009) constructs a set of base kernel matrices in advance and
fuses them linearly to obtain an optimal kernel matrix. Based
on this principle, numerous MKC algorithms have been de-
veloped (Huang, Chuang, and Chen 2011; Du et al. 2015;
Liu 2023; Yang et al. 2023; Wan et al. 2024a).

Although these methods improve clustering performance,
they struggle with large-scale and dynamic datasets. MKC
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has high computational complexity. Specifically, storing
base kernel matrices requires O(mn2) space complexity
and decomposing them takesO(n3) time complexity, where
n and m are the number of samples and base kernel ma-
trices, respectively. To enable MKC to handle large-scale
datasets, most existing research (Lu et al. 2022; Liang et al.
2023, 2024b) uses the Nyström method based on uniform
sampling to approximate kernel matrices. However, uniform
sampling is inadequate for datasets with unbalanced cluster
distributions, often leading to information redundancy or ne-
glect of small clusters, and failing to accurately capture the
structure of the dataset (Musco and Musco 2017). Moreover,
using the same landmark points for constructing all base ker-
nel matrices limits the ability to capture complementary in-
formation across different kernels (Yang and Wang 2018).
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Figure 1: (a) and (b): Landmarks obtained from uniform and
leverage score sampling on YTF10 (dataset with unbalanced
cluster distributions). (c) and (d): The variation in Accuracy
(ACC) and running time with different numbers of landmark
points and different sampling methods.

Leverage score sampling, by contrast, selects landmark
points based on their statistical significance in representing
the dataset. This approach improves kernel accuracy and
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diversity by focusing on the most influential points, par-
ticularly where uniform sampling might miss smaller, cru-
cial clusters (Musco and Musco 2017). To better illustrate
our motivation, we conducted two comparison experiments.
First, we used t-SNE (van der Maaten and Hinton 2008) to
visualize the distributions of landmarks sampled by both
uniform sampling and leverage score sampling methods.
As illustrated in Figures 1 (a) and (b), uniform sampling
tends to oversample dense regions in datasets with unbal-
anced cluster distributions, whereas leverage score sampling
covers the entire dataset more efficiently. In the second ex-
periment, we selected landmark points using both sampling
methods and applied the approximation spectral clustering
algorithm from (Chen and Cai 2011) on the training set. The
corresponding clustering accuracy with different numbers of
landmarks and different sampling methods is shown in Fig-
ure 1 (c) and (d). The results demonstrate that leverage score
sampling improves clustering performance when the num-
ber of landmark points is the same. Therefore, we propose
using leverage score sampling to approximate kernel matri-
ces, enhancing both the accuracy of the approximation and
the diversity among the base kernel matrices.

Despite addressing the issue of kernel matrix approxima-
tion, another significant limitation of MKC lies in its in-
efficiency in handling scenarios where base kernel matri-
ces are accumulated over time. Specifically, in hazardous
gas detection systems (Vergara et al. 2013), multiple sen-
sors periodically collect data on various gases. Each data
collection represents a view, resulting in a corresponding
base kernel matrix, which increases over time. A straight-
forward approach involves storing historical and incoming
matrices and applying existing MKC methods to the entire
set for clustering. However, this approach leads to signifi-
cant waste of time and storage space, as well as the under-
utilization of previously acquired model knowledge. Incre-
mental learning (Wang et al. 2023) offers a solution by fa-
cilitating continuous learning from dynamically distributed
data, allowing knowledge to be updated incrementally with-
out retraining on all previous data. While widely applied in
supervised learning, recent studies (Zhou et al. 2019; Yin
et al. 2021; Wan et al. 2022, 2024b; Liang et al. 2024a; Hu
and Chen 2019; Cai et al. 2023; Qu et al. 2024) have be-
gun integrating incremental learning into unsupervised clus-
tering algorithms. However, research on incrementally han-
dling base kernel matrices is limited, especially with varying
landmark points. Misalignment can lead to significant er-
rors and inconsistent clustering, particularly in incremental
learning where new data adds complexity. Addressing this is
crucial to maintaining accuracy and robustness.

To address the above issues, we propose a novel algo-
rithm, termed Incremental Nyström-based Multiple Kernel
Clustering(INMKC). This method employs leverage score
sampling to approximate the base kernel matrix and inte-
grates matrix factorization with incremental learning into a
unified framework, effectively tackling the large-scale MKC
problem with incremental base kernels. The specific frame-
work of INMKC is shown in Figure 2. As illustrated, only
the consensus cluster structure matrix H∗

p and the latest data
view Xp need to be stored. Additionally, only the latest ap-

proximate base kernel matrix Gp needs to be processed dur-
ing the iteration. Thus, the proposed INMKC significantly
reduces computational complexity. The main contributions
of the paper can be summarized as follows:
• We employ leverage score sampling for accurate kernel

approximation and introduce a novel method for aligning
and fusing approximate kernel matrices.

• INMKC is the first to address large-scale base kernel in-
crement issues by integrating matrix decomposition with
incremental learning, enabling the aligned fusion of ap-
proximate kernels with different landmark points.

• To solve the optimization problem, we develop a four-
step alternating strategy and prove its convergence both
theoretically and experimentally. Extensive experiments
demonstrate the effectiveness and efficiency of the pro-
posed INMKC compared to state-of-the-art methods.
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Figure 2: Framework of the proposed INMKC method.

Related Work
In this section, we will briefly overview related research on
scalable multiple kernel clustering, the ridge leverage scores
Nyström method, and incremental learning.

Scalable Multiple Kernel Clustering
High complexity is a critical issue for MKC algorithms.
The method described in (Liang et al. 2024b) extends Sim-
pleMKKM to large-scale datasets by uniformly sampling s
landmark points and constructing the approximate base ker-
nel matrices {Mp ∈ Rn×s}mp=1 between the n sample points
and the s landmark points. The objective function is formu-
lated as follows:

min
γ

max
U,V

1√
ns

Tr(U⊤MγV),

s.t. U⊤U = Ik,V
⊤V = Ik,

(1)

where Mγ =
∑m

p=1 γ
2
pMp, U ∈ Rn×k and V ∈ Rs×k.

However, this method has two critical drawbacks: 1) It uses
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uniform sampling to approximate the kernel matrix, which
affects the accuracy of the approximation. Additionally, the
proposed fusion method can only handle matrices with the
same landmark points and cannot fuse matrices with differ-
ent landmark points. 2) Over time, when a new base ker-
nel matrix emerges, this method requires fusing all previous
base kernel matrices before clustering, leading to resource
waste.

Ridge Leverage Scores Nyström Method
Leverage score sampling (Alaoui and Mahoney 2015) in-
volves computing the ridge leverage score for each data
point xi, which is then used as the sampling probability for
selecting landmark points. The ridge leverage score, with re-
spect to the kernel matrix K, refers to the λ-ridge leverage
score for any λ > 0 as follows,

lλi (K)
def
=

(
K(K+ λI)−1

)
i,i

, (2)

where I is an n× n identity matrix. Musco proposed the re-
cursive RLS-Nyström algorithm (Musco and Musco 2017),
which requires only O(ns) kernel evaluations and O(ns2)
computation time. We will use this algorithm to approximate
the base kernel matrices, achieving linear complexity.

Incremental Learning
Traditional machine learning models are often designed to
capture static data distributions, while incremental learning
is adapted to learn from dynamic data distributions. To ad-
dress domain incremental learning, which can be viewed
as the increment of views in multi-view clustering(MVC),
(Wan et al. 2022) maintains a partition matrix and updates
knowledge using new data views. Upon receiving the parti-
tion matrix Ht at time t, the final consensus partition matrix
H∗

t can be obtained by maximizing the following objective
function,

max
H̃t,Wt

Tr
(
H̃⊤

t HtWt

)
+ λTr

(
H̃⊤

t H
∗
t−1

)
,

s.t. H̃⊤
t H̃t = Ik,W

⊤
t Wt = Ik,

(3)

where Wt is the permutation matrix. However, this method
overlooks the computational complexity involved in con-
structing the consensus partition and cannot directly handle
base kernel matrices.

Methodology
In this section, we first give the notations and problem def-
inition, then outline the objective formulation of INMKC.
We proceed by proposing a four-step alternating optimiza-
tion algorithm, followed by a discussion on its convergence
and complexity.

Notation and Problem statement
Vectors and matrices are denoted by lowercase bold and up-
percase bold letters, respectively.

Our method addresses the problem of large-scale cluster-
ing for data views that increase over time. Let Xp repre-
sent the data view at time p, which is transformed into a

base kernel matrix Kp using a Gaussian kernel function. As
new views emerge, the corresponding base kernel matrices
accumulate. To tackle this, we employ the recursive RLS-
Nyström algorithm (Musco and Musco 2017) to obtain an
approximate kernel matrix Gp at time p. The matrix factor-
ization of Gp reveals the clustering structure at the current
time, which is then integrated with the previous consensus
cluster structure H∗

p−1 using incremental learning.

The Proposed Formulation
We first construct a basic model for Gp to efficiently ex-
plore its underlying clustering structure and facilitate knowl-
edge fusion. According to Theorem 4.1 and Theorem 4.2 in
(Liang et al. 2024c), the rank of the expected kernel ma-
trix is approximately k, and the empirical kernel matrix is
also close to the expected one. Theorem 8 in (Musco and
Musco 2017) further supports that the approximated kernel
matrix Gp is close to the empirical kernel matrix. Thus, we
can infer that rank(Gp) = k. We then decompose Gp to
obtain the embedding factors of the sample points in the
k-dimensional subspace at time p, representing the cluster
structure.

min
Sp,Zp

∥Gp − SpZ
⊤
p ∥2F,

s.t. S⊤
p Sp = Ik, Z

⊤
p Zp = Ik,

(4)

where Sp ∈ Rn×k and Zp ∈ Rs×k respectively represent
the embeddings of the sample points and landmark points,
encoding their underlying information. Following (Han and
Kim 2015), we apply only the orthogonal constraint to these
matrices, omitting the non-negativity constraint. This en-
hances the diversity of Sp and Zp, facilitating the fusion of
Sp. We consider introducing incremental learning to fuse the
cluster structure at time p with the consensus cluster struc-
ture at time p− 1. This approach allows us to maintain only
the latest consensus structure, avoiding the need to store all
base kernel matrices. The objective function is as follows:

min
H∗

p,Qp

∥H∗
p − SpQp∥2F + ∥H∗

p −H∗
p−1∥2F,

s.t.
(
H∗

p

)⊤
H∗

p = Ik,Q
⊤
p Qp = Ik,

(5)

where H∗
p ∈ Rn×k represents the consensus cluster struc-

ture at time p. The first term in Eq.(5) aligns the consensus
cluster structure H∗

p with the cluster structure Sp at time p.
The matrix Qp ∈ Rk×k denotes the matching matrix. The
second term integrates the current consensus cluster struc-
ture H∗

p with the historical knowledge H∗
p−1.

To efficiently learn the consensus cluster structure H∗
p and

the embedding matrix Sp of the base kernel matrix Gp, we
integrate matrix decomposition with incremental learning
into a unified framework. This leads to the final objective
function:

min
X

∥Gp − SpZ
⊤
p ∥2F + ∥H∗

p − SpQp∥2F + ∥H∗
p −H∗

p−1∥2F,

s.t. S⊤
p Sp = Ik, Z

⊤
p Zp = Ik,

(
H∗

p

)⊤
H∗

p = Ik,Q
⊤
p Qp = Ik,

(6)
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for better clarity, we introduce decision variable X to
represent the variables that require optimization, X ={
H∗

p,Sp,Qp,Zp

}
.

Optimization and Analysis
Optimization
To solve the optimization problem in Eq.(6), we design a
four-step alternating optimization algorithm.
Update H∗

p Fixing the other variables, the optimization
problem for H∗

p can be formulated as follows:

min
H∗

p

∥H∗
p −Ap∥2F, s.t.

(
H∗

p

)⊤
H∗

p = Ik, (7)

where Ap = SpQp + H∗
p−1. By extending the Frobenius

norm into trace form, the problem of optimizing H∗
p be-

comes:

max
H∗

p

Tr
((

H∗
p

)⊤
Ap

)
, s.t.

(
H∗

p

)⊤
H∗

p = Ik. (8)

The optimal solution for H∗
p can be obtained by comput-

ing the singular value decomposition (SVD) of Ap. Specif-
ically, if Ap = UaΣaV

⊤
a , the closed-form solution (Wang

et al. 2019) in Eq.(8) is as follows:

H∗
p = UaV

⊤
a . (9)

Update Sp Fixing H∗
p, Qp, and Zp, Eq.(6) can be expressed

as follows:
max
Sp

Tr
(
S⊤
p Bp

)
, s.t. S⊤

p Sp = Ik, (10)

where Bp = GpZp +H∗
pQ

⊤
p . Using the same approach as

described above, if Bp = UbΣbV
⊤
b , the closed-form solu-

tion to Eq.(10) is obtained as follows:

Sp = UbV
⊤
b . (11)

Update Qp By eliminating irrelevant variables from the ob-
jective function, Eq.(6) can be simplified as follows:

max
Qp

Tr
(
Q⊤

p Cp

)
, s.t. Q⊤

p Qp = Ik, (12)

where Cp = S⊤
p H

∗
p. Similar to Eq.(11), the closed-form

solution for Qp is obtained as,

Qp = UcV
⊤
c , (13)

where Uc represents the left singular vectors of Cp, and Vc

denotes the right singular vectors of Cp.
Update Zp Fixing H∗

p, Sp, Qp, Eq.(6) can be simplified to,

max
Zp

Tr
(
Z⊤

p Dp

)
, s.t. Z⊤

p Zp = Ik, (14)

Where Dp = G⊤
p Sp. If Dp = UdΣdV

⊤
d , Eq.(14) can be

efficiently solved by SVD with computational complexity
O(sk2), yielding the closed-form solution,

Zp = UdV
⊤
d . (15)

The alternating optimization process of INMKC is sum-
marized in Algorithm 1. It is worth noting that the base ker-
nel matrices arrive in a certain order. Upon receiving a new
base kernel matrix, the most up-to-date consensus cluster
structure H∗

p is obtained. Performing k-means on this ma-
trix then yields the final clustering results.

Algorithm 1: Incremental Nyström-based Multiple Kernel
Clustering

Input: Datasets {Xp}mp=1, landmark point number s, clus-
ter number k, and ε0.

Output: H∗
m.

1: for p = 1 to m do
2: Compute approximate base kernel matrix Gp by Re-

cursive RLS-Nyström algorithm (Musco and Musco
2017).

3: Initialize Sp and Zp by performing the truncated k-
SVD on Gp, Qp = Ik.

4: if p = 1 then
5: Initialize : H∗

1 = S1.
6: else
7: i = 1
8: while not converged do
9: Update H∗

p by solving Eq.(9).
10: Update Sp by solving Eq.(11).
11: Update Qp by solving Eq.(13).
12: Update Zp by solving Eq.(15).
13: i← i+ 1
14: end while

(
obji−1 − obji

)
/obji ≤ ε0

15: end if
16: end for

Analysis and Extensions
Computational Complexity According to the optimiza-
tion process described in Algorithm 1, the computation com-
plexity of each iteration isO(k2n)+O(k3). Let T denote the
maximum number of iterations and m represent the number
of base kernel matrices, the overall computational complex-
ity of INMKC is O(Tms2n) + O(Tmk2n) + O(Tmk3).
Moreover, INMKC requires storing only the latest base
kernel matrix Gp and the consensus cluster structure H∗

p,
resulting in a storage complexity of O(sn + kn). When
s(s ≪ n), both computational and storage complexity are
linear with the number of samples n. Therefore, the pro-
posed method can theoretically handle large-scale datasets.

Convergence To verify the convergence of the algorithm,
we present the following proposition.

Proposition. Denote G as the objective function Eq.(6). The
value of G is monotonically decreasing.

Proof. To prove that G = ∥Gp − SpZ
⊤
p ∥2F + ∥H∗

p −
SpQp∥2F+∥H∗

p−H∗
p−1∥2F is monotonically decreasing with

iterations, we need to show that each subproblem of G de-
creases monotonically.

For the subproblem involving H∗
p, at the (i + 1)-th iter-

ation, given Sp
(i), Qp

(i) and Zp
(i), the solution H∗

p
(i+1) is

obtained by optimizing Eq.(8). According to Theorem 2 in
(Wang et al. 2019), Eq.(8) provides a closed-form solution,
ensuring that the optimization process for H∗

p
(i+1) is mono-

tonically decreasing. Similarly, for the other subproblems, it
follows that the objective function G is monotonically de-
creasing with iterations.
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Moreover, the lower bound of the objective function
Eq.(6) is zero. By the monotone convergence theorem, the
algorithm is theoretically convergent. Additionally, we will
verify the convergence of INMKC experimentally.

Experiment
In this section, we conduct experiments to verify the effec-
tiveness and efficiency of INMKC. Specifically, the cluster-
ing performance, running time, kernel-fusion performance,
convergence, and ablation study.

Datasets and Baselines

Dataset Sample View Cluster
CUB 600 2 10
PFold 694 12 27

Fashion 10000 3 10
ALOI 10800 4 100

YTF10 38654 4 10
NMNIST 70000 2 10
YTF100 195537 4 100

Winnipeg 325834 2 7

Table 1: Description of Datasets.

Table 1 lists eight widely used public MVC datasets, in-
cluding CUB1, PFold2, Fashion (Xiao, Rasul, and Vollgraf
2017), ALOI3, YTF104, NMNIST5, YTF1006, Winnipeg7.

A summary of the nine state-of-the-art multi-view clus-
tering algorithms is as follows:

• LMVSC(Kang et al. 2020) achieves large-scale spectral
clustering by integrating distinct anchor graphs tailored
to each view.

• OMSC (Chen et al. 2022) develops an efficient uni-
fied model for multi-view subspace clustering with near-
linear complexity.

• FDAGF (Zhang et al. 2023) proposes a hybrid multi-size
anchor graph fusion framework, ensuring linear com-
plexity for large-scale datasets.

• CAMVC(Zhang et al. 2024b) introduces a prior cluster-
guided anchor learning strategy, achieving high perfor-
mance on large-scale datasets with reduced complexity.

• SMKKM(Liang et al. 2024b) proposes using SVD in-
stead of eigen-decomposition (EVD) in the original Sim-
pleMKKM algorithm, thereby reducing complexity.

• OLICAG(Zhang et al. 2024a) presents a strategy for
learning cross-view anchor graphs, enhancing multi-
view fuzzy clustering through latent information fusion.

1http://www.vision.caltech.edu/visipedia/CUB-200.html
2mkl.ucsd.edu/dataset/protein-fold-prediction
3https://www.kaggle.com/alvations/aloi-dataset
4https://www.cs.tau.ac.il/∼wolf/ytfaces/
5http://yann.lecun.com/exdb/mnist/
6https://www.cs.tau.ac.il/∼wolf/ytfaces/
7https://archive.ics.uci.edu/ml/datasets/Crop+mapping+using+

fused+optical-radar+data+set

• IMSC (Zhou et al. 2019) integrates incremental learning
into multi-view spectral clustering, updating a consensus
model by sequentially fusing views.

• SCGL (Yin et al. 2021) combines sparse graph learning
with connected graph learning to propose an efficient in-
cremental multi-view spectral clustering method.

• CMVC(Wan et al. 2022) requires maintaining only a
consensus partition matrix and updates knowledge with
new view data for clustering.

Experiment Setup
The implementation codes of the aforementioned methods
are publicly available in their respective papers, and we run
them without any modifications. For methods with hyperpa-
rameters, we tune them using grid search as recommended
in their papers to achieve the best outcomes. In our experi-
ment, the dimension of the Nyström approximation matrix is
set to s = 300. Considering that all algorithms eventually re-
quire performing k-means to obtain final clustering assign-
ments, we repeat k-means 50 times to reduce the random-
ness and report the maximum values in Table 2. We employ
three evaluation metrics, including Accuracy (ACC), Nor-
malized Mutual Information (NMI), and Purity, to verify the
clustering performance. All experiments are conducted on a
computer equipped with an Intel Core i9-9900K CPU and
48GB RAM.

Clustering Performance
Table 2 presents the clustering results on eight benchmark
datasets. The best value is marked in bold, and ’-’ indicates
that the algorithm failed to run due to insufficient memory.
From the table, we observe that:

• Our proposed method outperforms state-of-the-art com-
petitors on PFold, ALOI, YTFace10, NMNIST, YTF100
and Winnipeg. INMKC also achieves significant im-
provements on other datasets. Especially, INMKC ex-
ceeds the performance of the second-best algorithm by
1.83%, 1.73%, 3.21%, 2.71%, 6.15%, 5.82%, 1.22% and
0.24% in ACC across all benchmark datasets.

• As a strong baseline for large-scale MKC algorithm,
SMKKM(Liang et al. 2024b) achieves high performance.
However, on all benchmark datasets, INMKC consis-
tently outperforms SMKKM by 20.16%, 10.95%, 6.14%,
24.42%, 20.57% and 20.44% in terms of ACC. This sig-
nificant performance gap demonstrates the effectiveness
of our approximation method based on leverage score
sampling.

• As a powerful baseline for MVC algorithm based on in-
cremental learning, CMVC(Wan et al. 2022) also demon-
strates high clustering performance. However, CMVC
requires the selection of a hyperparameter, which can
limit its practical application due to the absence of
ground truth in clustering tasks. In contrast, INMKC
is parameter-free and outperforms CMVC by 3.16%,
2.74%, 4.25%, 2.71%, 11.04%, 5.82%, 1.34% and 4.51%
in terms of ACC across all benchmark datasets.
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Dataset Metric LMVSC OMSC FDAGF CAMVC SMKKM OLICAG IMSC SCGL CMVC INMKC
ACC 74.67 65.17 74.00 79.50 61.17 61.50 68.17 78.00 78.17 81.33
NMI 71.06 73.50 74.02 74.72 58.26 62.21 63.84 78.32 78.05 76.50CUB

Purity 75.17 67.67 81.33 79.50 64.83 61.50 68.83 78.50 79.50 81.33
ACC 22.48 28.67 29.68 36.02 26.80 19.31 20.61 22.33 35.01 37.75
NMI 26.52 34.08 38.28 45.15 35.00 25.40 33.14 28.19 40.04 46.53PFold

Purity 42.51 31.41 44.09 42.36 34.15 23.63 29.68 27.81 42.07 45.10
ACC 54.62 64.44 68.95 73.88 70.95 63.84 63.62 68.07 72.84 77.09
NMI 51.52 73.75 69.78 74.14 63.94 61.39 68.57 75.72 71.11 72.04Fashion

Purity 60.41 67.93 76.38 76.00 70.95 64.71 71.92 69.27 72.87 77.09
ACC 57.53 34.20 54.42 62.32 49.27 66.15 49.94 61.69 70.98 73.69
NMI 75.42 68.44 75.00 75.29 65.72 78.17 70.21 76.89 82.61 83.67ALOI

Purity 70.53 35.32 73.70 63.29 53.76 67.27 56.60 63.08 74.22 75.27
ACC 75.42 74.04 73.04 82.86 68.44 - - - 77.97 89.01
NMI 77.83 76.91 79.24 84.62 74.48 - - - 80.47 86.47YTF10

Purity 80.91 76.16 81.27 86.67 76.43 - - - 81.30 89.01
ACC 39.11 58.49 47.94 42.39 45.29 - - - 59.91 65.73
NMI 33.53 51.60 47.25 36.52 34.75 - - - 51.62 54.62NMNIST

Purity 43.22 59.73 62.81 47.04 46.02 - - - 63.38 65.74
ACC 61.07 63.85 62.00 68.23 - - - - 68.11 69.45
NMI 78.52 81.55 80.26 82.21 - - - - 83.48 84.04YTF100

Purity 71.02 68.02 75.08 73.67 - - - - 74.95 76.70
ACC 56.85 52.16 60.07 54.33 - - - - 55.80 60.31
NMI 41.60 45.39 53.06 46.19 - - - - 42.28 50.51Winnipeg

Purity 57.11 63.51 63.66 68.86 - - - - 68.72 76.49

Table 2: Empirical evaluation and comparison of INMKC with nine baseline methods on eight benchmark datasets in terms of
clustering accuracy (ACC), normalized mutual information (NMI), and Purity.

Running Time
We evaluate the time efficiency of the INMKC algorithm,
as illustrated in Figure 3. The reported running time encom-
passes the initialization phase for all algorithms. The run-
ning time of the INMKC algorithm is measured from the in-
corporation of the first base kernel matrix until fusion with
the last one, consistent with the linear time complexity. Ex-
perimental results indicate that the INMKC algorithm has a
shorter running time compared to most benchmark methods,
confirming its computational efficiency.
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Figure 3: Comparison of INMKC with nine benchmark
methods in terms of relative logarithmic running time on
eight benchmark datasets. A missing bar indicates that the
method encountered an ’out-of-memory’ error.

Kernel-Fusion Performance

Given that INMKC can handle scenarios where the kernel
matrix grows over time, we conduct experiments to examine
whether INMKC enhances the quality of information fusion
as the number of kernel matrices increases incrementally. In
the experiment, we record clustering results with each added
kernel matrix. Due to space limitations, we present results
from only two datasets. As shown in Figure 4, clustering
performance improves with the increasing number of kernel
matrices, demonstrating that INMKC effectively fuses infor-
mation from previous kernel matrices.

Convergence

In the previous section, we have proven the convergence of
the algorithm theoretically. Subsequent experiments further
validate that the algorithm eventually converges to a local
optimum. We plot the changes in the objective value of IN-
MKC over iterations for the Fashion and YTFace10 datasets,
similar results for other datasets are omitted due to space
limitations. As shown in Figure 5, the objective value de-
creases monotonically, and the algorithm converges within
10 iterations.
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Figure 4: The kernel-fusion performance of INMKC with
kernel matrices collected in order on two datasets. Simi-
lar results for other datasets are omitted due to space con-
straints.

Method INMKC CMVC
CD Dataset LS US LS US

Uniform

CUB 81.33 78.83 81.00 78.33
Fashion 77.09 77.08 69.91 70.65
ALOI 73.69 73.17 71.30 69.89

NMNIST 65.73 57.15 64.80 63.41

Unbalanced

PFold 37.75 36.89 36.02 32.56
YTF10 89.01 77.58 80.79 74.67

YTF100 69.45 68.72 69.00 67.75
Winnipeg 60.31 54.28 59.73 57.46

Table 3: The ablation study of the sampling method con-
ducted by INMKC and CMVC on eight benchmark datasets
in terms of ACC. The best results are marked in bold.
’CD’ represents cluster distribution, ’LS’ represents lever-
age score sampling, and ’US’ represents uniform sampling.

Ablation Study
INMKC introduces two significant innovations in large-
scale MKC methods: leverage score sampling and incremen-
tal learning. To validate these contributions, we conduct two
ablation experiments.

In the first experiment, we compare leverage score sam-
pling with uniform sampling for both INMKC and CMVC
(Wan et al. 2022) algorithms. Results in Table 3 show that
leverage score sampling improves clustering performance,
especially on datasets with unbalanced cluster distributions,
such as Winnipeg, where the smallest cluster comprises only
0.35%. The use of leverage score sampling significantly en-
hances clustering performance, suggesting it can improve
the efficiency and effectiveness of large-scale MVC algo-
rithms.

In the second experiment, to verify the effectiveness of in-
cremental learning, we provide the objective function with-
out incremental learning, referred to as NMKC.

min
H∗,Sp,Zp,Qp

m∑
p=1

(
∥Gp − SpZ

⊤
p ∥2F + ∥H∗ − SpQp∥2F

)
,

s.t. S⊤
p Sp = Ik, Z

⊤
p Zp = Ik, (H

∗)
⊤
H∗ = Ik,Q

⊤
p Qp = Ik,

(16)
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Figure 5: The objective value of INMKC varies with increas-
ing iterations. Similar results for other datasets are omitted
due to space limitations.

where H∗ represents the consensus clustering structure ma-
trix. The results in Table 4 indicate that incremental learn-
ing not only enhances the fusion of base kernel information,
improving clustering performance, but also significantly
increases computational efficiency. Although INMKC has
slightly lower ACC than NMKC on the Winnipeg datasets,
its overall clustering performance is superior.

Method INMKC NMKC
Dataset ACC time ACC time
CUB 81.33 0.05 53.67 0.29
PFold 37.75 0.03 35.01 0.91

Fashion 77.09 0.36 49.95 2.33
ALOI 73.69 0.96 59.81 6.87

YTF10 89.01 1.34 87.62 11.97
NMNIST 65.73 2.48 51.37 10.66
YTF100 69.45 23.73 67.75 104.60
Winnipeg 60.31 13.11 63.34 37.76

Table 4: The ablation study of INMKC and NMKC on eight
benchmark datasets in terms of ACC and time. The best re-
sults are marked in bold. Due to space limitations, only the
results for ACC are shown.

Conclusion
In this paper, we address the limitations of existing
MKC algorithms and propose a parameter-free method,
termed Incremental Nyström-based Multiple Kernel Clus-
tering(INMKC). INMKC integrates matrix decomposition
and incremental learning into a unified framework. When
a new base kernel matrix emerges, INMKC first approxi-
mates it using the Nyström method with leverage score sam-
pling. It then performs matrix factorization and updates the
consensus cluster structure. These processes enable the al-
gorithm to handle both large-scale and domain-incremental
dynamic datasets efficiently. Our extensive experiments vali-
date the effectiveness and efficiency of INMKC, demonstrat-
ing its superior performance compared to existing MKC al-
gorithms. Furthermore, the design of INMKC significantly
reduces computational overhead, making it a practical and
scalable solution for real-world applications.
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